일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 프로그래머스연습문제
- 그리디알고리즘
- Image Classification
- 브루트포스알고리즘
- 그리디
- 프로그래머스코딩테스트
- 다이나믹프로그래밍
- 구현
- 백준알고리즘
- C++
- 해시를사용한집합과맵
- 자료구조
- 정수론
- C
- 큐
- 정렬
- 이분탐색
- 백준
- 프로그래머스
- 수학
- 이진탐색
- 논문리뷰
- MySQL
- 소수판정
- 프로그래머스sql
- SQL
- C언어
- 사칙연산
- 문자열
- 논문구현
- Today
- Total
초보 개발자의 이야기, 릿허브
[논문구현] ResNet (Deep Residual Learning for Image Recognition) 구현 본문
ResNet에 대한 논문 리뷰
https://beginnerdeveloper-lit.tistory.com/159
ResNet50
지난번 리뷰한 "Deep Residual Learning for Image Recognition" 논문의
ResNet 네트워크 중 ResNet50을 구현해보고자 한다.
ResNet50의 자세한 구조는 아래 Table을 참고하자.
논문에서 주로 소개 및 비교하는 모델은 34-Layer지만, 필자는 50-Layer를 구현했다.
34-Layer 모델과의 차이점은 각 Convolution Layer의 앞 뒤로 1 x 1 convolution이 추가된 것인데,
이는 저번 논문 리뷰에서도 언급한 Bottleneck 구조이다.
Bottleneck 구조란 말 그대로 "병목 구조"인데,
다음과 같이 차원이 줄었다가 늘어나는 현상을 병목 현상이라 한다.
ResNet에서 이야기하는 BottleNeck 구조 또한 이와 동일하다.
여기서 1 x 1 convolution은 Dimension을 줄였다가 키우는 역할을 하는데,
이는 3x3 Layer의 Input/Output Dimension을 줄이기 위해서이다.
Environment & Parameter
❗ 해당 논문의 ResNet50 모델의 구조에 초점을 맞춰 구현하였으며,
그 외 세부적인 사항까지 완벽하게 구현하지는 못했습니다.
(image crop, mean subtract 등)
❗ 또한, 논문에 사용된 Dataset과 다른 Dataset을 사용했으므로,
Parameter들 또한 상이하다는 점 양해 부탁드립니다.
실험에 사용한 환경은 아래와 같습니다.
Language : Python
Framework : Tensorflow (GPU)
Dataset : Kaggle Dog & Cat 중 일부 사용 (train : Dog 5000, Cat 5000 / validation : Dog 2000, Cat 2000)
(https://www.kaggle.com/datasets/tongpython/cat-and-dog?select=training_set)
(Dataset 중 일부 훼손된 이미지가 있어, 해당 이미지들 필수 삭제 후 훈련 필요)
Image Size : 224 x 224 x 3
Batch Size : 32
Epoch : 50
Learning Rate : 0.001 (momentum = 0.9)
ResNet50 Code
<ResNet50 Layers Code>
코드를 보면서 ResNet50 Model의 각 Layer들을 하나씩 살펴보도록 하자.
먼저 다시 50-Layer ResNet의 구조를 보면 아래 Table과 같다.
[ Conv 1 ]
첫번째 Convolution Layer부터 살펴보자.
이미지 input size는 224 x 224로, 64개의 filter, kernel size = 7 x 7, stride = 2를 사용한다.
stride = 2를 사용함으로서, output size = 112 x 112 가 된다.
ResNet 논문의 implementation에서
각 convolution 연산 뒤, activation 전에 Batch Normalization을 수행했기에 필자도 동일하게 구현했다.
# input = 224 x 224 x 3
# Conv1 -> 1
x = layers.Conv2D(64, (7, 7), strides=2, padding='same', input_shape=(224, 224, 3))(x) # 112x112x64
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
[ Conv 2 ]
두번째 Convolution Layer이다.
두번째 Convolution 연산을 시작하기 전, 먼저 3 x 3 maxpooling(stride = 2)을 적용한다.
maxpooling 이후 output size는 56 x 56 이다.
x = layers.MaxPool2D((3, 3), 2, padding='same')(x) # 56x56x64
이후 본격적인 Convolution 연산을 진행한다.
Table에 나와 있는 값에 따라 1 x 1, 3 x 3, 1 x 1 kernel size의 연산을
각각 64, 64, 256개의 filter를 이용해 계산한다.
위와 같은 계산을 3번 반복한다.
여기서 한 가지, ResNet에서 기억하고 구현해야할 중요한 요소가 하나있다.
바로 shortcut connection이다.
output에 input값을 다시 더해 residual한 구조를 갖게 하는 요소로,
input x에 대해 Layer를 거쳐 F(x) +x 라는 결과가 나오도록 해야한다.
shortcut = x
먼저, 본격적인 Convolution 연산에 앞서,
이전 Layer의 output이자 현재 Layer의 input이 될 x를 shortcut으로 두자.
# Conv2_x -> 3
for i in range(3) :
if i==0 :
x = layers.Conv2D(64, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(64, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# In case of i = 0 (for Dimension Identity)
# shortcut should enter as input with x
shortcut = layers.Conv2D(256, (1, 1), strides=1, padding='same')(shortcut)
shortcut = layers.BatchNormalization()(shortcut)
shortcut = layers.Activation('relu')(shortcut)
x = layers.Add()([x, shortcut])
shortcut = x # 56x56x256
for문은 앞서 이야기했던 convolution 연산을 3번 반복하기 위한 장치로,
ResNet의 경우, 각 Layer마다 3, 4, 6, 3번 반복한다.
우선, i == 0인 경우, 즉, 처음으로 해당 Layer의 연산을 시작할 경우를 살펴보자.
input x에 대해 위 Table대로 Convolution, BN, Activation 연산을 거친 x는 최종적으로 F(x)라 하자.
이렇게 연산을 거친 output x이자 F(x)의 dimension은 기존 input x(=shortcut)과 달라졌으므로,
동일한 dimension으로 맞춰주는 연산이 필요하다.
따라서, input, 즉, shortcut에 output F(x)에 마지막으로 적용한 연산을 적용하여 dimension을 맞춰준다.
이렇게 shortcut(input)과 x(=F(x)/output)의 dimension이 맞춰졌다면,
input인 shortcut에 대해 Layer를 걸쳐 나온 F(x)라는 결과에
입력인 shorcut를 그대로 다시 더해준다. (F(x) + x( = shortcut))
그리고 이렇게 생성된 output x는 다시 다음 Layer의 input으로 전해지게 되고,
다음 Layer의 shorcut(=input)은 현재의 x값으로 초기화해준다.
# Conv2_x -> 3
for i in range(3) :
if i==0 :
...
else :
x = layers.Conv2D(64, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(64, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Add()([x, shortcut])
shortcut = x # 56x56x256
이제 i == 0이 아닌 경우를 살펴보자.
해당 경우에도 사실 마찬가지이다.
단, 여기서는 shortcut의 dimension이 output인 F(x)(=x)의 dimension과 동일하므로,
위와 같이 shortcut의 dimension을 맞춰주는 연산이 불필요하다.
이 외에는 위 작성한 코드와 동일하다.
2번째 Convolution Layer에 대한 전체 코드는 다음과 같다.
x = layers.MaxPool2D((3, 3), 2, padding='same')(x) # 56x56x64
shortcut = x
# Conv2_x -> 3
for i in range(3) :
if i==0 :
x = layers.Conv2D(64, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(64, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# In case of i = 0 (for Dimension Identity)
# shortcut should enter as input with x
shortcut = layers.Conv2D(256, (1, 1), strides=1, padding='same')(shortcut)
shortcut = layers.BatchNormalization()(shortcut)
shortcut = layers.Activation('relu')(shortcut)
x = layers.Add()([x, shortcut])
shortcut = x # 56x56x256
else :
x = layers.Conv2D(64, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(64, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Add()([x, shortcut])
shortcut = x # 56x56x256
[ Conv 3 ]
세번째 Convolution Layer이다.
세번째 Convolution Layer부터 5번째 Convolution Layer까지는 사실 2번째 Layer에서 작성한 코드에서
Table에 있는 filter개수 및 kernel size, 반복횟수만 바꿔주면 된다.
위와 동일한 설명이므로 Convolution 3 ~5 Layer까지의 설명은 생략하겠다.
# Conv3_x -> 4
for i in range(4) :
if i==0 :
x = layers.Conv2D(128, (1, 1), strides=2, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(128, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# In case of i = 0 (for Dimension Identity)
# shortcut should enter as input with x, 112x112x64 -> 112x112x256
shortcut = layers.Conv2D(512, (1, 1), strides=2, padding='same')(shortcut)
shortcut = layers.BatchNormalization()(shortcut)
shortcut = layers.Activation('relu')(shortcut)
x = layers.Add()([x, shortcut])
shortcut = x # 28x28x512
else :
x = layers.Conv2D(128, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(128, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Add()([x, shortcut])
shortcut = x # 28x28x512
[ Conv 4 ]
# Conv4_x -> 6
for i in range(6) :
if i==0 :
x = layers.Conv2D(256, (1, 1), strides=2, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(1024, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# In case of i = 0 (for Dimension Identity)
# shortcut should enter as input with x, 112x112x64 -> 112x112x256
shortcut = layers.Conv2D(1024, (1, 1), strides=2, padding='same')(shortcut)
shortcut = layers.BatchNormalization()(shortcut)
shortcut = layers.Activation('relu')(shortcut)
x = layers.Add()([x, shortcut])
shortcut = x # 14x14x1024
else :
x = layers.Conv2D(256, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(1024, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Add()([x, shortcut])
shortcut = x # 14x14x1024
[ Conv 5 ]
# Conv5_x -> 3
for i in range(3) :
if i==0 :
x = layers.Conv2D(512, (1, 1), strides=2, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(2048, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# In case of i = 0 (for Dimension Identity)
# shortcut should enter as input with x, 112x112x64 -> 112x112x256
shortcut = layers.Conv2D(2048, (1, 1), strides=2, padding='same')(shortcut)
shortcut = layers.BatchNormalization()(shortcut)
shortcut = layers.Activation('relu')(shortcut)
x = layers.Add()([x, shortcut])
shortcut = x # 7x7x2048
else :
x = layers.Conv2D(512, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(2048, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Add()([x, shortcut])
shortcut = x # 7x7x2048
[ FC Layer ]
마지막으로 네트워크의 끝단 연산부분에 대해 살펴보자.
여기서는 average pooling, 1000-d fc, softmax를 수행한다.
단, 필자는 class가 2개이므로, 이 부분은 dataset에 맞게 변경이 필요하다.
# 2048 (same with AdaptiveAvgPool in Pytorch)
x = layers.GlobalAveragePooling2D()(x)
# classes = 2
x = layers.Dense(2, activation='softmax')(x)
return x
<Entire ResNet50 Model Code>
'''
< ResNet Architecture>
- ResNet "50"-layer
- 5_x Layer (1,3,4,6,3)
- skip connection
- Sequential model X
- Batch Normalization right after each convolution and before activation
'''
def ResNet(x):
# input = 224 x 224 x 3
# Conv1 -> 1
x = layers.Conv2D(64, (7, 7), strides=2, padding='same', input_shape=(224, 224, 3))(x) # 112x112x64
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.MaxPool2D((3, 3), 2, padding='same')(x) # 56x56x64
shortcut = x
# Conv2_x -> 3
for i in range(3) :
if i==0 :
x = layers.Conv2D(64, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(64, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# In case of i = 0 (for Dimension Identity)
# shortcut should enter as input with x
shortcut = layers.Conv2D(256, (1, 1), strides=1, padding='same')(shortcut)
shortcut = layers.BatchNormalization()(shortcut)
shortcut = layers.Activation('relu')(shortcut)
x = layers.Add()([x, shortcut])
shortcut = x # 56x56x256
else :
x = layers.Conv2D(64, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(64, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Add()([x, shortcut])
shortcut = x # 56x56x256
# Conv3_x -> 4
for i in range(4) :
if i==0 :
x = layers.Conv2D(128, (1, 1), strides=2, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(128, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# In case of i = 0 (for Dimension Identity)
# shortcut should enter as input with x, 112x112x64 -> 112x112x256
shortcut = layers.Conv2D(512, (1, 1), strides=2, padding='same')(shortcut)
shortcut = layers.BatchNormalization()(shortcut)
shortcut = layers.Activation('relu')(shortcut)
x = layers.Add()([x, shortcut])
shortcut = x # 28x28x512
else :
x = layers.Conv2D(128, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(128, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Add()([x, shortcut])
shortcut = x # 28x28x512
# Conv4_x -> 6
for i in range(6) :
if i==0 :
x = layers.Conv2D(256, (1, 1), strides=2, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(1024, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# In case of i = 0 (for Dimension Identity)
# shortcut should enter as input with x, 112x112x64 -> 112x112x256
shortcut = layers.Conv2D(1024, (1, 1), strides=2, padding='same')(shortcut)
shortcut = layers.BatchNormalization()(shortcut)
shortcut = layers.Activation('relu')(shortcut)
x = layers.Add()([x, shortcut])
shortcut = x # 14x14x1024
else :
x = layers.Conv2D(256, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(1024, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Add()([x, shortcut])
shortcut = x # 14x14x1024
# Conv5_x -> 3
for i in range(3) :
if i==0 :
x = layers.Conv2D(512, (1, 1), strides=2, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(2048, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# In case of i = 0 (for Dimension Identity)
# shortcut should enter as input with x, 112x112x64 -> 112x112x256
shortcut = layers.Conv2D(2048, (1, 1), strides=2, padding='same')(shortcut)
shortcut = layers.BatchNormalization()(shortcut)
shortcut = layers.Activation('relu')(shortcut)
x = layers.Add()([x, shortcut])
shortcut = x # 7x7x2048
else :
x = layers.Conv2D(512, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(2048, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Add()([x, shortcut])
shortcut = x # 7x7x2048
# 2048 (same with AdaptiveAvgPool in Pytorch)
x = layers.GlobalAveragePooling2D()(x)
# classes = 2
x = layers.Dense(2, activation='softmax')(x)
return x
<Entire Code>
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import os
import numpy as np
import cv2
import matplotlib.pyplot as plt
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
tf.test.is_gpu_available()
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpus[0], True)
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)
'''
< ResNet Architecture>
- ResNet "50"-layer
- 5_x Layer (1,3,4,6,3)
- skip connection
- Sequential model X
- Batch Normalization right after each convolution and before activation
'''
def ResNet(x):
# input = 224 x 224 x 3
# Conv1 -> 1
x = layers.Conv2D(64, (7, 7), strides=2, padding='same', input_shape=(224, 224, 3))(x) # 112x112x64
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.MaxPool2D((3, 3), 2, padding='same')(x) # 56x56x64
shortcut = x
# Conv2_x -> 3
for i in range(3) :
if i==0 :
x = layers.Conv2D(64, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(64, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# In case of i = 0 (for Dimension Identity)
# shortcut should enter as input with x
shortcut = layers.Conv2D(256, (1, 1), strides=1, padding='same')(shortcut)
shortcut = layers.BatchNormalization()(shortcut)
shortcut = layers.Activation('relu')(shortcut)
x = layers.Add()([x, shortcut])
shortcut = x # 56x56x256
else :
x = layers.Conv2D(64, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(64, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Add()([x, shortcut])
shortcut = x # 56x56x256
# Conv3_x -> 4
for i in range(4) :
if i==0 :
x = layers.Conv2D(128, (1, 1), strides=2, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(128, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# In case of i = 0 (for Dimension Identity)
# shortcut should enter as input with x, 112x112x64 -> 112x112x256
shortcut = layers.Conv2D(512, (1, 1), strides=2, padding='same')(shortcut)
shortcut = layers.BatchNormalization()(shortcut)
shortcut = layers.Activation('relu')(shortcut)
x = layers.Add()([x, shortcut])
shortcut = x # 28x28x512
else :
x = layers.Conv2D(128, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(128, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Add()([x, shortcut])
shortcut = x # 28x28x512
# Conv4_x -> 6
for i in range(6) :
if i==0 :
x = layers.Conv2D(256, (1, 1), strides=2, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(1024, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# In case of i = 0 (for Dimension Identity)
# shortcut should enter as input with x, 112x112x64 -> 112x112x256
shortcut = layers.Conv2D(1024, (1, 1), strides=2, padding='same')(shortcut)
shortcut = layers.BatchNormalization()(shortcut)
shortcut = layers.Activation('relu')(shortcut)
x = layers.Add()([x, shortcut])
shortcut = x # 14x14x1024
else :
x = layers.Conv2D(256, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(256, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(1024, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Add()([x, shortcut])
shortcut = x # 14x14x1024
# Conv5_x -> 3
for i in range(3) :
if i==0 :
x = layers.Conv2D(512, (1, 1), strides=2, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(2048, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# In case of i = 0 (for Dimension Identity)
# shortcut should enter as input with x, 112x112x64 -> 112x112x256
shortcut = layers.Conv2D(2048, (1, 1), strides=2, padding='same')(shortcut)
shortcut = layers.BatchNormalization()(shortcut)
shortcut = layers.Activation('relu')(shortcut)
x = layers.Add()([x, shortcut])
shortcut = x # 7x7x2048
else :
x = layers.Conv2D(512, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(512, (3, 3), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(2048, (1, 1), strides=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Add()([x, shortcut])
shortcut = x # 7x7x2048
# 2048 (same with AdaptiveAvgPool in Pytorch)
x = layers.GlobalAveragePooling2D()(x)
# classes = 2
x = layers.Dense(2, activation='softmax')(x)
return x
# Dataset (Kaggle Cat and Dog Dataset)
dataset_path = os.path.join('/home/kellybjs/Cat_Dog_Dataset')
train_dataset_path = dataset_path + '/train_set'
train_data_generator = ImageDataGenerator(rescale=1. / 255)
train_dataset = train_data_generator.flow_from_directory(train_dataset_path,
shuffle=True,
target_size=(224, 224),
batch_size=32,
class_mode='categorical')
valid_dataset_path = dataset_path + '/validation_set'
valid_data_generator = ImageDataGenerator(rescale=1. / 255)
valid_dataset = valid_data_generator.flow_from_directory(valid_dataset_path,
shuffle=True,
target_size=(224, 224),
batch_size=32,
class_mode='categorical')
input_shape = layers.Input(shape=(224, 224, 3), dtype='float32', name='input')
# Train
model = tf.keras.Model(input_shape, ResNet(input_shape))
model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.001, momentum=0.9),
loss='categorical_crossentropy',
metrics=['acc'])
model.summary()
train = model.fit_generator(train_dataset, epochs=50, validation_data=valid_dataset)
# Accuracy graph
plt.figure(1)
plt.plot(train.history['acc'])
plt.plot(train.history['val_acc'])
plt.title('Accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.savefig('ResNet_Accuracy_1.png')
# Loss graph
plt.figure(0)
plt.plot(train.history['loss'])
plt.plot(train.history['val_loss'])
plt.title('Loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.savefig('ResNet_Loss_1.png')
Result
위 코드를 적용한 Train 및 Validation Accuracy 결과이다.
Train 시에는 최대 약 90%, Validation 시에는 약 60~70%의 정확도가 나오는 것을 볼 수 있다.
Validation 정확도가 비교적 높지 않아, 파라미터 수정 및 재학습 예정이다.
위 코드를 적용한 Train 및 Validation Loss 결과이다.
두 그래프 모두 점차 Loss 가 줄어드는 것이 보이나, Validation의 경우 후반에 많이 진동하는 점이 아쉽다.
이 또한 위 Accuracy 와 함께 보완해야할 점으로 보인다.
'논문 > 💻 논문 구현' 카테고리의 다른 글
[논문구현] DenseNet (Densely Connected Convolutional Networks) 구현 (0) | 2023.01.27 |
---|---|
[논문구현] VGG16 (Very Deep Convolutional Networks for Large-Scale Image Recognition) 구현 (0) | 2023.01.20 |